Order from us for quality, customized work in due time of your choice.
Introduction
The need for teaching math skills is an integral part of any training program, and if it is school education, the initial attention is paid to mathematical score. (Hodges, McIntosh, & Gentry, 2017). One of the possible and affordable ways to increase the ability of students to perform both elementary and more complex calculative activities is to attend extra-curricular classes for the additional workload (Foster, Anthony, Clements, Sarama, & Williams, 2016). For example, Foster et al. (2016) think that it is best to start teaching these skills in kindergarten when using special computer programs and technologies.
Perhaps, this approach can be effective enough. Nevertheless, it is essential to not only provide children with an appropriate program but also prepare them for classes to assess the degree of interest of each student in this subject and the desire to learn (McTiernan, Holloway, Healy, & Hogan, 2016). If it is not done for some reason, for instance, because of the long absence of a certain child or the lack of desire to make contact, attention should likely be paid to the various methods of teaching. As Burns, Ysseldyke, Nelson, and Kanive (2015) note, a certain number of repetitions of the studied material should be carried out to more effectively memorize the features of the mathematical calculations. Moreover, appropriate early training facilitates faster the memorization of material during late learning periods in the middle and high school (Nelson, Parker, & Zaslofsky, 2016). Thus, other methods may also be of interest to tutors to teach their wards certain skills and thereby help them to adapt to a complex scientific environment.
Additional Ways to Improve Math Fluency Skills
While reviewing the scientific literature to search for relevant, up-to-date information on the selected topic, it can be noted that many authors share similar views on methods of intervention. For instance, Duhon, House, Hastings, Poncy, and Solomon (2015) are confident that a timely response should be given to any difficulties that arise in the students, and the method of immediate reaction is true. It is possible that this approach can be of good use.
If it is the question of the success of the chosen strategy, opinions may also diverge. Schutte et al. (2015) raise the issue of how it is best to teach children of mathematical literacy: massively or selectively and conclude that each of the ways has its pluses. For example, Jacob and Parkinson (2015) argue that the relationship between individual and group learning is quite strong, and even despite the effectiveness of individual lessons, students can get all the necessary knowledge in the classroom.
It is also significant for not only the child but also the tutor to be interested in achieving success in teaching his or her students and plan wards success (Cai, Georgiou, Wen, & Das, 2016). It is important to reveal the interest and inclination of the child to mathematics since early childhood because later in school, students will face rather hard tasks (Help your child, 2016). If such work is properly conducted, it is likely that this science will entice children and will not bring difficulties in solving more and more advanced tasks (Green, Bunge, Chiongbian, Barrow, & Ferrer, 2017). The ways to achieve effective results can be different. For instance, Bartelet, Ghysels, Groot, Haelermans, and Maassen van den Brink (2016) note the importance of advanced homework aimed at in-depth training of the material covered and the consolidation of appropriate skills. Crawford, Higgins, Huscroft-DAngelo, and Hall (2016) suggest using electronic tools to make the learning process as advanced and modern as possible since practically all modern children and students have access to the Internet and electronic gadgets. For instance, according to Eaton (2013), the fastest and the most efficient way to teach math can be achieved through games and various computer applications. Therefore, as it becomes clear, many authors have different opinions but agree on the issue that much depends on teachers themselves.
Teaching Children with Mild Intellectual Disabilities
There are quite different strategies for teaching children with mild mental disabilities, which are mentioned in the scientific literature. For example, Swanson (2015) proposes to develop individual programs for training various mathematical skills: memorization, classification operations, etc. According to Purpura, Reid, Eiland, and Baroody (2015) in the case a small mental disorder has been detected in the child in early childhood, training math should not be stopped. On the contrary, teaching initial math skills should be conducted to help the child adapt in the future.
For children with mild intellectual disabilities, Foster, Sevcik, Romski, and Morris (2015) propose the use of specific phonological procedures aimed at accelerating the assimilation of certain mathematical phenomena and training prior knowledge. In general, this method is quite innovative because children not only learn the basics but also train particular cognitive skills that are necessary for ordinary life. Thus, Duncan (2017) offers to transform classes into a full-fledged game where the child has the right to choose and can, together with parents or teachers, engage in the basics of math through fascinating activities. A slightly different approach is suggested by Cozad and Riccomini (2016) who consider digital-based work with children with some mental disabilities as one of the primary sources of gaining important knowledge, monitoring the performance of students, and adjusting the learning process in parallel. One of the useful skills that can be practiced with children of almost any level of ability is teaching the basics of addition and subtraction (Wise, 2016). Such work can certainly be conducted by almost any child and at the same time will be of significant benefit to the further learning process.
Cognitive Strategies to Involve Children in Studying Math Skills
One of the ways to help children who have difficulties with mathematics is to use certain cognitive strategies (Bugden, DeWind, & Brannon, 2016). The effectiveness of this approach to learning is confirmed by quite a few authors. For example, Özsoy and Ataman (2017) claim that honing specific skills contributes to the faster further response to similar tasks and thereby helps the child. The task of a qualified teacher, as Chandran (2015) remarks, is to help children cope with anxiety caused by difficulties and assist them in adapting the scientific environment that is new for them.
Specific interventions are offered by Musti-Rao and Plati (2015) who consider several ways of teaching, including both self-study and teacher-led lessons. Thus, Liu, Kallai, Schunn, and Fiez (2015) also talk about individual training of skills and suggest improving mathematical fluency by using computer-based education. However, this method is partially challenged by Powell and Fuchs (2015) who see successful work only in an individual approach to each student and are confident that all implementations should be conducted under the direction of a responsible teacher. Perhaps, that is why Clements and Sarama (2016) conduct a positive correlation between the cognitive skills of children and their ability to study exact sciences. In other words, the higher the motivation and preparedness of a child are, the more likely it is that his or her success in mathematics will be high enough.
Alternative Measures
As alternative ways to improve students mathematical skills, different mechanisms can be used. For instance, Brendefur et al. (2015) suggest referring to a special assessment system that is more relevant for older children and can also be applied in higher education. With the help of such a mechanism, the student can get full information about his or her problem topics and pay extra attention to specific rules for improving the learning outcome. Reisener, Dufrene, Clark, Olmi, and Tingstrom (2016) propose to use visual aids and other digital tools that can show the peculiarities of certain mathematical calculations outside the box, that is, through comparisons with other scientific fields.
Finally, Szkudlarek and Brannon (2017) consider a rather old mechanism for training mathematical fluency, resorting exclusively to the help of numbers and without the use of language. This method can seem quite difficult to study, especially at the initial stage. Nevertheless, as practice shows, the cognitive nature of the human is specific enough, and such a method of learning can be very successful (Szkudlarek and Brannon, 2017). Thus, both alternative and traditional methods can be effective, and it is essential to responsibly approach work and not be afraid to resort to different ways of training to help children, adolescents, and adults to better adapt to the scientific environment.
References
Bartelet, D., Ghysels, J., Groot, W., Haelermans, C., & Maassen van den Brink, H. (2016). The differential effect of basic mathematics skills homework via a web-based intelligent tutoring system across achievement subgroups and mathematics domains: A randomized field experiment. Journal of Educational Psychology, 108(1), 1-20.
Brendefur, J., Johnson, E. S., Thiede, K. W., Smith, E. V., Strother, S., Severson, H. H., & Beaulieu, J. (2015). Developing a comprehensive mathematical assessment tool to improve mathematics intervention for at-risk students. International Journal for Research in Learning Disabilities, 2(2), 65-90.
Bugden, S., DeWind, N. K., & Brannon, E. M. (2016). Using cognitive training studies to unravel the mechanisms by which the approximate number system supports symbolic math ability. Current Opinion in Behavioral Sciences, 10, 73-80.
Burns, M. K., Ysseldyke, J., Nelson, P. M., & Kanive, R. (2015). Number of repetitions required to retain single-digit multiplication math facts for elementary students. School Psychology Quarterly, 30(3), 398-405.
Cai, D., Georgiou, G. K., Wen, M., & Das, J. P. (2016). The role of planning in different mathematical skills. Journal of Cognitive Psychology, 28(2), 234-241.
Chandran, P. (2015). The fear of all sums: How teachers can help students with maths anxiety. The Guardian.
Clements, D. H., & Sarama, J. (2016). Math, science, and technology in the early grades. The Future of Children, 26(2), 75-94.
Cozad, L. E., & Riccomini, P. J. (2016). Effects of digital-based math fluency interventions on learners with math difficulties: A review of the literature. Journal of Special Education Apprenticeship, 5(2), 1-19.
Crawford, L., Higgins, K. N., Huscroft-DAngelo, J. N., & Hall, L. (2016). Students use of electronic support tools in mathematics. Educational Technology Research and Development, 64(6), 1163-1182.
Duhon, G. J., House, S., Hastings, K., Poncy, B., & Solomon, B. (2015). Adding immediate feedback to explicit timing: An option for enhancing treatment intensity to improve mathematics fluency. Journal of Behavioral Education, 24(1), 74-87.
Duncan, A. (2017). 7 simple strategies for teaching math to kids: Easy ways to teach kids math.
Eaton, K. (2013). With apps, children can play the game of math. The New York Times.
Foster, M. E., Anthony, J. L., Clements, D. H., Sarama, J., & Williams, J. M. (2016). Improving mathematics learning of kindergarten students through computer-assisted instruction. Journal for Research in Mathematics Education, 47(3), 206-232.
Foster, M. E., Sevcik, R. A., Romski, M., & Morris, R. D. (2015). Effects of phonological awareness and naming speed on mathematics skills in children with mild intellectual disabilities. Developmental Neurorehabilitation, 18(5), 304-316.
Green, C. T., Bunge, S. A., Chiongbian, V. B., Barrow, M., & Ferrer, E. (2017). Fluid reasoning predicts future mathematical performance among children and adolescents. Journal of experimental child psychology, 157, 125-143.
Help your child develop early math skills (2016).
Hodges, J., McIntosh, J., & Gentry, M. (2017). The effect of an out-of-school enrichment program on the academic achievement of high-potential students from low-income families. Journal of Advanced Academics, 28(3), 204-224.
Jacob, R., & Parkinson, J. (2015). The potential for school-based interventions that target executive function to improve academic achievement: A review. Review of Educational Research, 85(4), 512-552.
Liu, A. S., Kallai, A. Y., Schunn, C. D., & Fiez, J. A. (2015). Using mental computation training to improve complex mathematical performance. Instructional Science, 43(4), 463-485.
McTiernan, A., Holloway, J., Healy, O., & Hogan, M. (2016). A randomized controlled trial of the morningside math facts curriculum on fluency, stability, endurance and application outcomes. Journal of Behavioral Education, 25(1), 49-68.
Musti-Rao, S., & Plati, E. (2015). Comparing two classwide interventions: Implications of using technology for increasing multiplication fact fluency. Journal of Behavioral Education, 24(4), 418-437.
Nelson, P. M., Parker, D. C., & Zaslofsky, A. F. (2016). The relative value of growth in math fact skills across late elementary and middle school. Assessment for Effective Intervention, 41(3), 184-192.
Özsoy, G., & Ataman, A. (2017). The effect of metacognitive strategy training on mathematical problem solving achievement. International Electronic Journal of Elementary Education, 1(2), 67-82.
Powell, S. R., & Fuchs, L. S. (2015). Intensive intervention in mathematics. Learning Disabilities Research & Practice, 30(4), 182-192.
Purpura, D. J., Reid, E. E., Eiland, M. D., & Baroody, A. J. (2015). Using a brief preschool early numeracy skills screener to identify young children with mathematics difficulties. School Psychology Review, 44(1), 41-59.
Reisener, C. D., Dufrene, B. A., Clark, C. R., Olmi, D. J., & Tingstrom, D. H. (2016). Selecting effective interventions to increase math computation fluency via brief experimental analyses. Psychology in the Schools, 53(1), 39-57.
Schutte, G. M., Duhon, G. J., Solomon, B. G., Poncy, B. C., Moore, K., & Story, B. (2015). A comparative analysis of massed vs. distributed practice on basic math fact fluency growth rates. Journal of School Psychology, 53(2), 149-159.
Swanson, H. L. (2015). Cognitive strategy interventions improve word problem solving and working memory in children with math disabilities. Frontiers in Psychology, 6(1099), 1-13.
Szkudlarek, E., & Brannon, E. M. (2017). Does the approximate number system serve as a foundation for symbolic mathematics? Language Learning and Development, 13(2), 171-190.
Wise, R. (2016). 3 mental math (addition) strategies for kids-fun & engaging. Web.
Order from us for quality, customized work in due time of your choice.